\qquad
\qquad
Amman Badawi

QUESTION 1. (i) Give me an example of a finite commutative ring A such that $\operatorname{char}(A)=11$, but A is not an integral domain.
(FINITE)
Consider $Z_{11}(+) \mathbb{Z}$. Then: "1" $=(1,0)$ and $|(1,0)|=11$.
 NOT an I.D
(ii) Give me an example of a UFD, say A, that is a $G C D$-domain, but for some $a, b \in A$, we cannot write $g c d(a, b)$ as a linear combination of a and b.
$\mathbb{Z}[x]$ is a UFD and hence a GCD domains.
Let $a=3, b=x$. $\operatorname{gcof}(3, x)=1$ But $1 \neq 3 c_{1}+x c_{2}$ for any
(iii) Le: A be a finite commutative ring. Convince me that $N(A)=J(A)$. $c_{1}, c_{2} \in \mathbb{Z}[x$
Io Finite Rings: Prime Ideals and Maximal Ideals are the Same $\therefore \bigcap_{\forall i}$ (All prime Ideals) $=\cap$ (All Maximal Ioleals)

$$
\therefore \quad \Delta(A)=J(A)
$$

(iv) Give me an example of an integral domain D such that D has an irreducible element, say d, but d is not a prime element of D.
LET $D=\mathbb{Z}\left[x^{2}, x^{3}\right] . d=x^{2}$ is Erreducible

$$
\text { But } \exists x^{6} \in \mathbb{Z}\left[x^{2}, x^{3}\right] \text { set. } x^{6}=x^{3}: x^{3}
$$

But $x^{2}+x^{3}, \therefore x^{2}$ is NOT Prim
QUESTION 2. (i) let I be a proper primary ideal of a commutative ring A, and let $F=\left\{x \in A \mid x^{n} \in I\right\}$. Prove that F is a prime ideal of A.
$F=\left\{x \in A / x^{n} \in I\right\}$. Voshow: Fix prime.
UE SHoW: whenever $a b \in F$, thew $a \in F$ or $b \in F$.
Let $a b \notin F \quad \therefore(a b)^{n} \in I$. By Definitions

$$
\begin{aligned}
& \Rightarrow a_{n}^{n} b^{n} \in I \quad \mid: \text { Ring Commutes } \\
& \therefore V_{n} \in I \quad\left(b^{n}\right)_{n m}^{m} \quad \underset{i \cdot e}{ } \quad b^{n m} \in I
\end{aligned}
$$

$a \in F \quad(O R) \quad b \in F \quad \therefore F$ is prime
(ii) Let I be a proper ideal of a commutative ring A. Prove that I is a prime ideal of A if and only if the set $S=R-I$
is a multiplicatively closed subset of A. is a multiplicatively closed subset of A.
(1) Let I be a prime Ioleal. Io Show: $S=R \mid I$ is Multiplicatinaly closed
DENY.

$$
\therefore \exists d_{1}, d_{2} \in S \quad \text { s.t } \quad d_{1} d_{2} \notin S .
$$

Equivalently: $\exists d_{1}, d_{2} \notin I \quad s \cdot t \cdot d_{1} d_{2} \in I \quad|\because I=R| s$. But I is a prions Ideal.

Contradiction.
(2): Let $S=R \mid I$ is Multplicatively closed. Ls Show: I is a prim $\begin{aligned} & \text { Ideal. }\end{aligned}$

DENY. \therefore I is an IDEAL of R, but NOT prime.
Then $\exists d_{1} d_{2} \in I$ sit. $d_{1} \notin I$ and $d_{2} \notin I$.
$\therefore \quad d_{1} \in S$ and $d_{2} \in S$.
$\therefore \quad d_{1} d_{2} \in S \quad \mid \because S$ mullupticatively closed.
$\therefore \quad d_{1} d_{2} \in S \cap I . \quad$ But $S=R \mid I$.
and $I \cap R \mid I=\phi$ Always. Contradiction.
(iii) Briefly, how will you construct an integral domain A with exactly one nonzero maximal ideal, say M, such that $Z \subset A \subset Q$? What is $J(A)$? What is $\mathrm{N}(\mathrm{A})$? are they equal?

No
Let p be a prime natweab number. (say, $p=2$)
Let $A:=\left\{\left.\frac{a}{b} \right\rvert\, p \nmid b, a \in Q, b \in Q^{\star}\right\}$.
$z \subset A \subset Q \quad \mid \because b=1$ is Allowed
Then $P A$ ss the ONLY Maximal Ideal of A.

$$
\therefore J(A)=\bigcap_{\forall i} M_{i} \Rightarrow J(A)=p A
$$

Also, Note $\{0\}$ and $\overline{\mathrm{PA} A}$ are the only prime ideals of A . $\operatorname{arc} N(A)=\{0\}$. Hence $N(A)$ not equal $J(A)$
\qquad
QUESTION 3. (i) Convince me that $A=Z_{3} \times Z_{5} \times Z_{3}$ is not ring-isomorphic to $B=Z_{4,5}$ (Hint: Find $|U(A)|$ and $|U(B)|)$
$|U(A)|=(2)(4)(2)=16 \quad \because \mathbb{Z}_{3}$ and \mathbb{Z}_{5} are fields.
$|U(B)|=\phi(45)=6(4)=24 \quad \mid: 45=3^{2} \times 5$
\therefore THEY Cannot be Rsomorphic-4 $(3-1) \cdot 3 \cdot(5-1): 5^{\circ}$
 field. How many elements does \bar{F} have? (just the number, do not list all elements)
We show: I is prime and F is finite.
$f(0)=1, f(1)=1, f(2)=1 \quad \therefore f(x)$ is Srreducilele
$(\because f$ is Monic and degree 3 in an I.D.
f has no roots in $Z \Rightarrow f$ is Irredurith
f has no roots in $z_{3} \Rightarrow f$ is Irreducible $\begin{gathered}\left.\text { in } \mathbb{Z}_{3}[x]\right)\end{gathered}$
BUT: $\mathbb{Z}_{3}[x]$ is a PID (and hence a UFD) $\left(\because \mathbb{Z}_{3}\right.$ is a field)
$\therefore f$ ie Irreducible $\Rightarrow f$ is Prime $\Rightarrow(f)$ is a PRIME.
$\therefore F=A /(f)$ is an Integral DOMAIN. [CONTD ON PREVIOUS PAGO]
(iii) Let $f: A \rightarrow B$ be a ring-homomorphism that is oNTO $\left(A, B\right.$ are connmulative). Prove that $f\left(\Lambda_{A}\right)=1$. Hence
prove that $f(U(A))$ is a subgroup of $U(B)$:

Since f in ONTO, $\forall b \in B, \exists a \in A$ s.t. $f(a)=b$.
Io Show: $f\left(1_{A}\right)=1_{B}$ DENY. $\therefore \exists a \in A$ s.t. $f(a)=1$ and $\frac{\text { and }}{a \neq 1}$.
(iv) Let $f: A \rightarrow B$ be a ring-homomorphism, where A is a commutative ring and B is an integral lorain such that
$f(a) \neq 0$ for some $a \in A$. Prove that $f\left(1_{A}\right)=1_{B}$, and hence prove that $f(U(A)$ is a subgroup of $U(B)$. $f(a) \neq 0$ for some $a \in A$. Prove that $f\left(1_{A}\right)=1_{B}$, and hence prove that $f(U(A))$ is a subgroup of $U(B)$. B is an Integral domain.
Io show: $f\left(1_{A}\right)=1_{B}$
DENY. $\quad \therefore f\left(1_{A}\right)=b$ where $b \neq 1_{B}$
$\exists a \in A$ set. $f(a)=c \neq 0$
consider

$$
\begin{aligned}
& \quad f(a)=f(a * 1)=f(a) * f(1)=c \cdot b \\
& \therefore c=c * b \quad \Rightarrow \quad c-c b=0 \Rightarrow c(1-b)=0
\end{aligned}
$$

Since B is an I.D.

$$
c=0 \quad \operatorname{CoR}) \quad 1-b=0 \text {, i.e. } b=1_{B}
$$

In Both cases we have a contradiction.
$\therefore f\left(1_{A}\right)=1_{B} \Rightarrow f(U(A))<U(B)$ by previous Question.

QUESTION 4. (i) Let A be a commutative ring and $w \in N(A)$. Prove that $w+u \in U(A)$ for every $u \in U(A)$. (Can you give a simpler proof than the one that you gave in the HW?)

- $\forall u \in \cup(A) a \forall m \in J(A), \quad u+m \in U(A)$.
- $N(A) \subseteq J(A)$.
\therefore From above 2 statements

$$
w \in N(A) \Rightarrow w \in J(A) \quad \therefore \forall \in U(A), \quad w+u \in U(A)
$$

(ii) Let A be a commutative ring and M be a maximal ideal of A. Prove that $M[x]$ is never a maximal ideal of $A[x]$. (Hint: Construct a certain ring homomorphism that is onto)
To Prove: $M[x]$ is never a Maximal Ideal of $A[x]$.
Proof: $\phi: A[x] \longrightarrow \frac{A}{M}[x]$. $\quad E[x]$ is a PID.
$\phi\left(a_{n} x^{n}+\ldots+a_{1} x+a_{0}\right) \rightarrow\left(a_{n}+M\right) x^{n}+\ldots+(a,+M) x+\left(a_{0}+M\right)$
is a ring Homomorphism that io ONTO. (Trivial $\int^{\prime} \frac{A[x]}{M[x]}$ is a PID clearly, $\operatorname{Ker}(\phi)=M[x] \quad \because$ when $a_{i} \in M \forall i$, the Image is M. $\therefore \frac{A[x]}{M[x]} \approx \frac{A}{M}[x]$.
[Contd. on previous Page].
(iii) Let $A=Z_{3}[x], f(x)=x^{2}+x \in A$ and $I=\left(x^{2}+x\right)=\operatorname{span}\left\{x^{2}+x\right\}$. Prove that A / I is ring-isomorphism to $Z_{3} \times Z_{3}$ (note $x A$ and ($\left.\mathrm{x}+1\right) \mathrm{A}$ are prime ideals (maybe maximal ideals too!))

$$
f(x)=x^{2}+x=x(x+1) \text { and } I=(x(x+1))
$$

Let $I_{1}=x A$ and $I_{2}=(x+1) A$.
I_{1} and I_{2} are Coprime.
$\left(\because \exists-x \in I_{1}\right.$, and $x+1 \in I_{2}$ s.t. $\left.-x+x+1=1\right)$
\therefore By The (CUIINESE REMAINDER THEOREM)

$$
\frac{\mathbb{Z}_{3}[x]}{I_{1} n I_{2}} \approx \frac{\mathbb{Z}_{3}[x]}{I_{1}} \times \frac{\mathbb{Z}_{3}[x]}{I_{2}}
$$

clearly, $I=I_{1} \cap I_{2}$
Faculty information
Ayman Badawi. Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates. Email: abadawi@aus du, wry.ayman-badawi.com

Answer $3(\bar{u})$: (conto.).
F is an Integral domain and F is Finite
\therefore Fir a FIELD.
Claim: F has 27 Elements.
PROOF:
Since $\mathbb{Z}_{3}[x]$ is Euclidean $\left(\because \frac{\mathbb{Z}_{3}}{}\right.$, is a field)

$$
a \in \mathbb{Z}_{3}[x] \Rightarrow a=k q+r
$$

By quotienting out by $f(x)$,
it io r clear that

$$
g \in \frac{\mathbb{Z}_{3}[x]}{I} \Rightarrow g=a_{2} x^{2}+a_{1} x+a_{0}+I
$$

and there are 3 choices for a, a, a,

$$
\therefore|F|=3^{3}=27
$$

Answer $3(\bar{\omega}): f\left(1_{A}\right)=1_{B}$ is a contradiction.

$$
\begin{aligned}
& \therefore f\left(1_{A}\right) \subseteq 1_{B} \text {. Loshow: } f(U(A))<U(B) \\
& u \in U(A) \Rightarrow f\left(1_{A}\right)=f\left(u>u^{-1}\right)=f(u) * f\left(u^{-1}\right)=1_{B} . \\
& \left.\therefore u \in U(A) \Rightarrow f(u) \in U(B) \text {. Also, } f(U(A)) \operatorname{isc\operatorname {cos}ED(\because f(4,)} \underset{\left.\because f(U(A)) \in U(B)^{2}\right)}{ } \text {. }=f(u, 4,)\right)
\end{aligned}
$$

Answer $4(1)$ (contd...)

$$
\frac{A[x]}{M[x]} \approx \frac{A}{M}[x]
$$

and $\frac{A}{M}$ is a Field
$\therefore \frac{A}{M}[x]$ is an Euclidean domain $(\Rightarrow P \mid D)$.
we show,
$\frac{A}{M}[x]$ cannot be a field.

DENY $\therefore \frac{A}{M}[x]$ is a field.
$\xrightarrow{\text { But }}$ insider $\alpha(x)=(1+M) x+\left(a_{0}+M\right) \in \frac{A}{M}[x]$ clearly $\alpha^{-1}(x)$ does NOT Exist
$\left(\begin{array}{l}\because(1+M) \text { is NOT Nelpotent.) } \\ \text { even if }\left(a_{0}+M\right) \text { was a unit ? }\end{array}\right.$ contradiction
$\therefore \frac{A}{m}[x]$ \& NOT a field
\sqrt{V}
$\frac{A[x]}{M[x]}$ is NOT a fueled
\downarrow
$M[x]$ is NOT Maximal.

Do Prone:

$$
\frac{\mathbb{Z}_{3}[x]}{(x)} \approx \frac{\mathbb{Z}_{3}[x]}{(x+1)} \approx \mathbb{Z}_{3} .
$$

Define:

$$
\begin{aligned}
\rightarrow \quad \phi_{1}: \mathbb{Z}_{3}[x] \longrightarrow \mathbb{Z}_{3} \\
\text { sit. } \phi_{1}(f(x))=f(0) \\
\text { This is a ring homomorphism } \\
\text { It is ONTO. }
\end{aligned} \quad\left\{\begin{array}{l}
\phi_{1}\left(f_{1}(x)+f_{2}(x)\right)=f_{1}(0)+f_{2}(0)=\phi(f)+\phi_{1} \\
\text { and } \left.\phi_{1}\left(f_{l}(x) \cdot f(x)\right)=f(0) \cdot+f_{2}\right)=\phi\left(f_{1}\right)
\end{array}\right.
$$

Whit is a ring teomonorphism (Same as above) It is onTo $\left(\because \forall a \in \mathbb{Z}_{3} \exists g(x)=(x+1)+a\right.$ sit.

$$
\phi(g(a))=g(2)=a)
$$

$$
\begin{array}{ll}
\therefore \mathbb{Z}_{3}[x] / \operatorname{Ker}(f) \approx \mathbb{Z}_{3} . & \phi(g(x))=g(2)=a) \\
& \text { Here : } \operatorname{Ker}(f)=(x+1) \mathbb{Z}_{3}[x] .
\end{array}
$$

$$
(\because l(x)=(x+1) * m(x) \Rightarrow \phi(l(x))=l(2)=(2+1) * m(2)=0 .
$$

AND $\left.l(x) \notin(x+1) \mathbb{Z}_{3}[x] \Rightarrow \phi(l(x)) \neq 0.\right)$.

$$
\therefore \frac{\mathbb{Z}_{3}[x]}{I} \approx \mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

$$
\begin{aligned}
& \left(\because \forall a \in \mathbb{Z}_{3} \quad \exists x+a \in \mathbb{Z}_{3}[x] \text { set. } \phi(x+a)=a\right) \\
& \therefore \frac{\mathbb{Z}_{3}[x]}{\operatorname{Ker}(f)} \approx \mathbb{Z}_{3} . \quad \text { Here: } \operatorname{Ker}(f)=(x) \\
& \left(\because(x)=\left\{x l(x) \mid \ell(x) \in \mathbb{Z}_{3}[x]\right)\right. \\
& \text { and } \phi((x))=0 * l(0)=0) \text {. } \\
& \rightarrow \phi_{2}: \mathbb{Z}_{3}[x] \rightarrow \mathbb{Z}_{3} \quad \text { oleo, } \phi(m(x)) \neq 0 \text { if } m(0) \neq 0 \\
& s \cdot t \cdot \phi_{2}(f(x))=f(2) \text {. } \\
& \text { ide. } m(x) \text { has a constant \& } \\
& \text { term. }
\end{aligned}
$$

